Энергосберегающие функции конденсатоотводчиков. Шланг для газа

О выборе конденсатоотводчиков и требованиях, предъявляемых к ним

А.Ю. Антомошкин, инженер, ООО «Спиракс-Сарко Инжиниринг», г. Санкт-Петербург

Выбор конденсатоотводчика

Отсутствие или неправильный выбор конденсатоотводчика приводят к огромным потерям в пароконденсатной системе. Вместе с тем правильно подобранный, рассчитанный и установленный конденсатоотводчик – это энергосберегающее устройство, способное сэкономить значительные средства и чрезвычайно быстро окупиться.

Очень часто пренебрегают тем фактом, что эффективность любого теплового оборудования в конечном счете зависит от организации конденсатоотвода. Только опытный инженер может выявить ошибки, которые приводят к снижению производительности теплового оборудования и к повышению эксплуатационных расходов.

Совершенствовать системы конденсатоотвода энергетику на своем предприятии будет гораздо легче, если он будет знать назначение, конструкцию и характеристики конденсатоотводчиков.

Выбор конденсатоотводчика зависит от типа оборудования и заданных условий эксплуатации. Этими условиями могут быть колебания рабочего давления, нагрузки, а также противодавление на конденсатоотводчике. Кроме этого, могут быть поставлены условия коррозионной стойко-

сти, стойкость к гидроударам и замерзанию, а также выпуска воздуха во время пуска системы.

Термин «конденсатоотводчик» не совсем правильно отражает назначение этого устройства. Гораздо понятнее прямой перевод с английского языка: steam trap означает «паровая ловушка». Значит, главная задача конденсатоотводчика – запирать пар в теплообменнике до полной конденсации, а затем отводить образовавшийся конденсат. Причем делать это конденсатоотводчик должен автоматически, при любых колебаниях нагрузки и параметров пара.

Самое главное, что надо запомнить – в природе не существует универсального конденсатоотводчика, но в то же время для конкретной системы всегда есть оптимальное решение. И чтобы найти его, прежде всего, стоит рассмотреть имеющиеся варианты и их особенности.

Существует три принципиально разных типа конденсатоотводчиков.

1. Термостатические конденсатоотводчики (рис. 1). Этот тип конденсатоотводчиков определяет разницу температур пара и конденсата. Чувствительным элементом и исполнительным механизмом является термостат. Прежде, чем конденсат будет отведен, он должен быть охлажден до температуры ниже температуры сухого насыщенного пара.

Главная особенность всех термостатических конденсатоотводчиков – это необходимость до-охлаждения конденсата на несколько градусов относительно температуры конденсации перед тем, как клапан откроется. То есть все они в большей или меньшей степени инерционны.

Особенности термостатических конденсатоотводчиков:

• высокая производительность при относительно малом размере и весе;

• свободный выпуск воздуха во время пуска;

• этот тип конденсатоотводчика не замерзает (если за конденсатоотводчиком нет подъема конденсатной линии, и конденсат не зальет его при отключении пара);

• простые в обслуживании.

2. Механические конденсатоотводчики (рис. 2). Принцип действия этих конденсатоотводчиков основан на разнице плотности пара и конденсата. Клапан приводится в действие шаровым поплавком или поплавком в виде перевернутого стакана. Такие конденсатоотводчики обеспечивают непрерывный отвод конденсата при температуре пара, поэтому этот тип конденсатоотводчика наиболее подходит для теп-лообменных аппаратов с большими поверхностями теплообмена и интенсивным образованием больших объемов конденсата.

Преимущества этого типа:

• хорошо работает на малых нагрузках и на него не влияют внезапные колебания нагрузки и давления;

• высокая производительность (до 100-150 т конденсата в час);

• устойчивы к гидроударам и надежны в эксплуатации.

При установке механических конденсатоотводчиков надо иметь в виду ряд его особенностей. Во-первых, в корпусе конденсатоотводчика с перевернутым стаканом всегда должна быть вода (гидрозатвор). Если конденсатоотводчик потеряет это водяное уплотнение, то пар будет беспрепятственно выходить через открытый клапан. Это может произойти там, где возможно резкое падение давления пара, которое приведет к вскипанию конденсата в корпусе. Если конденсатоотводчик с перевернутым стаканом используется на тех технологических установках, где возможны колебания давления, то на входе в конденсатоотводчик необходимо установить обратный клапан. Это поможет предотвратить потерю гидрозатвора.

Во-вторых, поплавковый конденсатоотводчик может быть поврежден при замерзании, поэтому корпус конденсатоотводчика должен быть хорошо теплоизолирован в случае его установки на открытом воздухе.

3. Термодинамические конденсатоотводчики (рис. 3). Основным элементом конденсатоотводчиков этого типа является диск. Их работа основана на разнице скоростей конденсата и пара при протекании в зазоре между седлом и диском.

Преимущества этого типа:

• работают без настройки или изменения размеров клапана;

• компактны, просты, имеют малый вес и достаточно большую производительность для своих размеров;

• этот тип конденсатоотводчиков может использоваться при высоких давлениях и на перегретом паре; устойчив к гидроударам и вибрациям; устойчив к коррозии, т.к. все части выполнены из нержавеющей стали;

• не разрушаются при замерзании и не обмерзают при установке в вертикальной плоскости и выпуске в атмосферу; правда, работа в таком положении может привести к износу краев диска;

• простое обслуживание и ремонт.

Однако, термодинамические конденсатоотводчики недостаточно устойчиво работают при очень низком входном давлении и высоком противодавлении.

Следует особо отметить, что ни у одного из типов конденсатоотводчиков нет абсолютных преимуществ или недостатков по сравнению с другими. Есть перечисленные выше особенности, которые, в совокупности со спецификой работы теплообменного оборудования, и определяют выбор типа и размера конденсатоотводчика.

Требования, предъявляемые к конденсатоотводчикам

Очевидно, что конденсатоотводчик является существенной частью любой пароконденсатной системы и оказывает весьма существенное влияние на ее функционирование. Его нельзя рассматривать изолированно, в отрыве от всей системы. Выбор конденсатоотводчика диктуется многими факторами, важнейшие из которых мы рассмотрим ниже. Однако, ставя перед собой задачу оснащения (или переоснащения) технологических установок конденсатоотводчиками, мы должны ответить на следующие вопросы:

• Удается ли поддерживать параметры и заданный тепловой режим (температуру) установки и ее производительность?

• Отличается ли реальное паропотребление от паспортного для данного технологического режима?

• Наблюдаются ли гидроудары?

Если вы сталкиваетесь с этими проблемами – значит, конденсатоотводчики не работают или выбраны неправильно.

Очень часто бывает так, что при установке неправильно выбранного конденсатоотводчика внешне не наблюдается никаких проблем. Иногда конденсатоотводчик даже может быть полностью закрыт без видимых последствий, как например, на паропроводах, где неполный дренаж в одной точке означает, что оставшийся конденсат переносится в следующую точку дренажа. Проблема может возникнуть, если и в следующей точке конденсатоотводчик не будет выполнять поставленную задачу.

Если же мы определили, что нам необходимо установить новые конденсатоотводчики, их выбор определяется следующими требованиями.

Выпуск воздуха. При пуске, т.е. в начале процесса, паровое пространство теплообменников и паропровод заполнены воздухом, который, если его не удалить, ухудшает процесс передачи тепла и увеличивает время разогрева. Время запуска увеличивается, и снижается эффективность работы установки. Желательно выпустить воздух до того, как он смешается с паром. Если воздух и пар смешаются, то разделить их можно будет только после конденсации пара. Воздушники могут потребоваться отдельно для паропроводов, но в большинстве случаев воздух выпускается через конденсатоотводчики.

В этом случае термостатические конденсатоотводчики имеют преимущества перед другими типами, т.к. они полностью открыты во время пуска.

Поплавковые конденсатоотводчики c шаровым поплавком не обладают такими возможностями, если их не оснастить встроенными термостатическими воздушниками. Такой воздушник позволяет выпускать значительное количество воздуха и, кроме того, обеспечивает дополнительную пропускную способность по холодному конденсату, что очень важно при холодных пусках.

Термодинамические конденсатоотводчики могут выпускать относительно небольшие количества воздуха, чего, однако, вполне достаточно при дренаже магистральных и спутниковых паропроводов, т.е. там, где этот тип чаще всего применяется.

Конденсатоотводчик с перевернутым стаканом имеет весьма ограниченную вентиляционную способность в силу принципа действия и конструкции. Тем не менее, установленный в параллель с таким конденсатоотводчиком термостатический воздушник позволяет свести к минимуму этот недостаток.

Отвод конденсата. Выпустив воздух, конденсатоотводчик затем должен отвести конденсат и не пропустить пар. Утечка пара ведет к неэффективности и неэкономичности процесса. Если скорость передачи тепла в технологическом процессе очень важна, то конденсат должен быть отведен немедленно после его образования при температуре пара. Одной из основных причин снижения эффективности теплового оборудования является затопление парового пространства, вызванное неправильным выбором типа конденсатоотводчика. Те же явления будут наблюдаться, если конденсатоотводчик имеет недостаточную пропускную способность, особенно на пусковых режимах.

распечатать | скачать бесплатно О выборе конденсатоотводчиков и требованиях, предъявляемых к ним, Антомошкин А.Ю., Источник: Журнал «Новости Теплоснабжения» № 4 (92) 2008 г.,
www.ntsn.ru

скачать архив.zip(185 кБт)

Газовые конденсатосборники на газопроводе: строение и назначение сборника конденсата + нюансы монтажа и ТО

Собираетесь газифицировать свой дом? Возможно, обустраиваете автономную систему газоснабжения с газгольдером? В таком случае, вам необходимо знать про газовые конденсатосборники.

Они помогут избежать множества проблем в пользовании газом и продлят срок службы оборудования, потребляющего газ, а также самого газопровода и дымоходов. Правильно подобранный и установленный конденсатосборник существенно повышает качество газа и обеспечивает безопасность функционирования всей системы.

В этой статье мы расскажем, какие функции выполняют конденсатосборники на газопроводе, что в них оседает, какими они бывают и чем отличаются, каков принцип действия этой арматуры, как их устанавливать и обслуживать.

Зачем нужен конденсатосборник на газопроводе?

И метан, и сжиженная пропан-бутановая смесь, нуждаются в дополнительной очистке. Вызвано это условиями хранения и использования, несовершенством газораспределительных систем.

Примеси в газах бывают различные:

  1. Вода может попасть в газопровод при его строительстве, проверке и продувке, а также через малейшие отверстия или щели. Она способствует коррозии стали и разрушает дымоход
  2. Бутан (жидкий) может реконденсироваться из пропан-бутановой смеси. Он не испаряется и не поднимается по газопроводу при отрицательных температурах, на морозе. Жидкий бутан в газовой горелке формирует факел, а в котле провоцирует остановку или взрыв.
  3. Мелкие твердые частицы могут попадать в газ из резервуаров и трубопровода системы, особенно, если они не новые и внутри начался процесс коррозии. Из-за них забиваются форсунки.

Каждый из этих видов примесей по-своему опасен. Вода, жидкий бутан в газовой горелке формирует факел, а в котле провоцирует взрыв; твердые частицы забивают форсунки.

Фильтрацией, накоплением и выведением посторонних включений занимается конденсатосборник.

В конденсатосборнике собирается всё тяжелое, в том числе – жидкий бутан, предотвращая опасные ситуации, которые он может спровоцировать.

Строение и принцип работы сборника

Конденсатосборники низкого давления принципиально отличаются от арматуры, рассчитанной на функционирование с газопроводом среднего или высокого давления.

Это вертикальная цилиндрическая ёмкость с выпуклым или конусообразным дном, к верхней части стенок которой с двух сторон приварены патрубки для соединения с газопроводом, а через крышку выведена трубка к поверхности земли, под специальный козырёк – ковер, для откачки конденсата.

Газ проходит по верхней части стакана из одного патрубка в другой, а все жидкие или твёрдые примеси из него оседают на дне. В таких системах давления газа недостаточно, чтобы вытолкнуть жидкость через трубку агрегата, и её необходимо откачивать насосом, подобно тому, как вы пьёте напиток из стакана через соломинку.

Коденсатосборники среднего и высокого давления – это расширительные баки, в которых газ как бы отстаивается. За счет значительного увеличения площади сечения, по сравнению с газопроводными трубами, скорость потока падает, и все тяжелые жидкие и твердые частицы успевают оседать.

Основная часть агрегата – сборник – представляет собой цилиндрическую ёмкость с выпуклыми оконечностями, как у цистерны. От неё сверху отведены два патрубка: по первому конденсат самотёком поступает из трубопровода, а по второй газ, попавший в конденсатор вместе с жидкостью, возвращается в трубопровод.

Читайте также:  Как выбрать сплит-систему?

Продувочная трубка для удаления конденсата в устройствах среднего или высокого давлений обязательно оснащена краном – а не пробкой, как в первом варианте. В некоторых случаях давления газа в системе может оказаться достаточно, чтобы удалить весь конденсат при открытии крана. Чаще так происходит с конденсатосборниками, установленными на поверхности земли.

В подземных резервуарах только при давлении не менее 15-20 кПа накопившаяся жидкость самостоятельно поднимается по отводящей трубке и выплёскивается из неё в специальный резервуар. При этом, у поверхности земли она может замерзать, от чего не только прекращается отвод конденсата, но и может пострадать трубка, в которой это произойдёт, вплоть до разрыва.

Кроме того, такие накопители конденсата обычно оснащают дополнительным оборудованием. Это может быть манометр для контроля давления внутри резервуара, датчик уровня жидкости, который покажет, сколько конденсата уже собрано, сигнализатор заполнения, подающий команду обслужить агрегат и спустить собранную жидкость.

Не редкость в таких установках – устройство автоматического удаления жидкости. На конденсатосборнике, установленном перед компрессором, сигнализатор заполнения автоматически отключает его.

Рекомендации по выбору конденсатосборников

В зависимости от параметров вашего газопровода на рынке представлен огромный ассортимент конденсатосборников для газопровода. Некоторые производители готовы изготовить агрегат любой модификации по вашему персональному заказу, точно отвечающий всем требованиям, если подходящей модели нет в представленной линейке продукции.

Газовые системы разнообразны по форме, давлению, условиям эксплуатации, наполнению, условиям эксплуатации – вариантов сочетания этих параметров много. А потому и вариантов конденсатосборников для газопроводов не меньше.

Неправильно подобранный агрегат не справится с возложенными на него задачами или будет неоправданно большим и дорогостоящим, поэтому окончательный выбор советуем поручить специалистам. А чтобы немного сориентироваться в этом разнообразии, разберёмся в их основных отличиях и принципах выбора по этим параметрам.

Критерий #1 — форма сборника конденсата

Сама ёмкость для сбора конденсата может располагаться горизонтально, как трубка или небольшая цистерна, либо вертикально, напоминая горшок. Определить, как должен располагаться выбранный конденсатосборник, можно не только по форме, но и по расположению патрубков для подключения: они всегда направлены горизонтально.

Вертикальные конденсатосборники чаще всего применяются на газгольдерах, они подключаются к резервуару и к вертикальной трубе, подающей газ в дом, при этом горшок для сбора конденсата расположен вертикально, параллельно трубе.

Горизонтальные модели, как правило, вешают или устанавливают на опорах под горизонтальной трубой, параллельно ей. Они чаще бывают высокого давления и больших объёмов.

Критерий #2 — давление в газопроводе

Важно приобретать конденсатосборник, рассчитанный на такое же давление, как и весь газопровод. Существует 3 варианта: для низкого, среднего и высокого давления.

Они различаются не только размерами и диаметром патрубков для подключения, но и внутренним устройством, способом установки и обслуживания. Поэтому несоответствие давления может сделать установку и эксплуатацию не только неэффективной, но и опасной.

Критерий #3 — другие параметры оборудования

Кроме упомянутых формы и давления, они различаются по таким параметрам:

  • Объём – от пары сотен миллилитров до нескольких кубометров, в зависимости от склонности газопровода к образованию конденсата, состава газовой смеси, климатических условий, объёма транспортируемого газа и места установки конденсатосборника.
  • Материал, из которого изготовлен приёмник конденсата – как правило, нержавеющая сталь. Она без дополнительной обработки может долгое время противостоять агрессивной среде влаги и жидкого бутана. Однако, нередко конденсатосборники, особенно больших объёмов, делают и из обычной стали. Для дополнительной защиты её обрабатывают не только снаружи, как весь газопровод, но и внутри – например, эпоксидным составом.
  • По месту установки конденсатосборники бывают подземными и надземными. На вторых обязательна маркировка «Газ», «Огнеопасно».
  • Наружная гидроизоляция должна быть такой же, как на газопроводе. Чаще всего это полиэтиленовые липкие ленты, но может быть и битумная мастика или битумно-полимерное покрытие. Для надземного оборудования достаточно защиты водостойкой краской, обязательно желтой.
  • Патрубки для подключения к газопроводу отличаются по диаметру, а также могут быть рассчитаны на сварной шов или неразъёмное соединение стали с пластиком.
  • Дополнительное оборудование. Кроме входного и выходного патрубка, обязательно есть трубка для отвода или откачки собранного конденсата. Также могут присутствовать разъёмы для манометра, датчика уровня жидкости, сигнализатора заполнения резервуара, для выравнивания давления.

Частные потребители, как правило, приобретают конденсатосборник для частных газгольдеров, при обустройстве автономного газоснабжения усадьбы.

В таких целях обычно используются небольшие устройства с вертикальной, похожей на стакан, ёмкостью и длинной трубкой для откачки конденсата. Устанавливаются они чаще под землёй, непосредственно на входе газгольдера, и дополнительного оборудования обычно не имеют.

Конденсатосборники высокого давления устанавливаются на магистральных газопроводах, у газораспределительных пунктов и перед крупными промышленными потребителями. Они имеют большой объём и форму цистерны, практически всегда оснащаются дополнительными датчиками и сигнализаторами.

Порядок установки конденсатосборника

Способ и порядок подключения коденсатосборника зависит от места его установки.

Основные места для сбора и отведения конденсата из газа таковы:

  1. На выходе из газгольдера в автономных системах газоснабжения.
  2. На низких участках газовой трубы или в точке соединения труб с противоположным уклоном.
  3. В начале («голове») газопровода – у нефтеперерабатывающего завода, после ГРС или резервуара для хранения.
  4. Перед компрессором, во избежание сбоев в его работе, а также перед заводами и другими промышленным потребителями.
  5. На выходе газа из компрессора – здесь конденсат собирается, если компрессор был остановлен, либо из резервуаров откачивали нефть, заполняя их газом.

Разработка плана расположения коденсатосборников – задача для главного инженера компании, транспортирующей и раздающей газ потребителям.

Он определяет не только места установки таких агрегатов и расстояние между ними, но и тип, размер и другие характеристики. После монтажа о расположении оборудования должны точно сигнализировать специальные таблички, указывающие направление и расстояние до него.

При выборе места для конденсатосборника учитывают также удобство дальнейшего обслуживания. Должен оставаться не только свободный доступ к трубке для откачки конденсата, но и возможность при необходимости откопать его для обслуживания, ремонта или замены. Само устройство располагается не меньше, чем за 2 м до ближайшей стены, а его соединение с трубой – не ближе 1 м от стены. Также запрещен монтаж таких устройств выше точки промерзания грунта.

Частные потребители могут столкнуться с необходимостью установки конденсатосборника только на газгольдере – на этом вопросе остановимся подробнее. Газгольдер устанавливается на расстоянии от дома, по требованиям нормативов – не менее 10 м, а потому труба до цокольного ввода прокладывается обычно горизонтально под землёй.

В такой схеме эту трубу делят на 2 части с противоположным уклоном, и на их стыке, в самой низкой точке, устанавливают конденсатосборник. Под него заливают небольшой фундамент, а сам агрегат ставят на ножки, для минимизации коррозии. Вход и выход устройства приваривают к газовой трубе, а трубку для откачки конденсата удлиняют до поверхности земли, затыкают пробкой и накрывают ковером.

Если газ выводится на поверхность земли вертикально, прямо от газгольдера, то место для сбора конденсата – самое начало трубы. При этом один патрубок приваривают к трубе, а второй – либо к ней же, чуть ниже, либо к самому резервуару. Трубка для откачки конденсата выводится параллельно газовому стояку.

Нюансы обслуживания оборудования

По графику, разработанному инженером газопоставляющего предприятия, производится продувка конденсатосборников и проверка их технического состояния. Эти работы считаются опасными, поскольку в конденсате содержится не только вода, но и легко воспламеняемый жидкий бутан, зачастую составляющий большую часть жидкости. Поэтому проводят обслуживание двое специалистов, только днём, не во время грозы.

Также запрещено сливать конденсат сразу в автоцистерну – только в металлические стационарные ёмкости с оградой или в котлован. Если поблизости есть нефтепровод, можно сливать конденсат в него.

Чтобы опустошить конденсатосборник низкого давления, понадобится насос, мотопомпа или вакуумная цистерна. Из конца трубки извлекают пробку, подключают к ней шланг насоса, открывают кран и запускают насос. Откачку продолжают, пока из насоса не перестанет течь жидкость, а затем его отключают, кран перекрывают, отсоединяют шланг и возвращают на место пробку.

Конденсатосборники среднего и высокого давления в насосе, как правило не нуждаются. В них предусмотрено 2 стояка: с конденсатом и с газом, на каждом есть кран, и обычно открыт только тот, что на газовом.

Чтобы освободить резервуар от жидкости, поворачивают оба вентиля: газовый закрывают, а конденсационный открывают. Жидкость выходит под давлением газа из магистрали. Для экономии времени и трудозатрат, этот процесс можно автоматизировать посредством контрольно-измерительных приборов и автоматики.

Если не удалить конденсат вовремя, гидроудар или пробка может не только препятствовать подаче газа, но и повредить трубу.

Кроме удаления собранного конденсата, обходчики газопровода проверяют наличие и точность табличек, указывающих на их расположение, а также исправность самого агрегата и связанной с ним запорной арматуры. При необходимости ремонт выполняется сразу или составляется акт, по которому в последствии выезжает специальная бригада.

Как обойтись без газовых конденсатосборников?

Конденсатосборник установленный на газопроводе – залог безопасности и сохранности оборудования.

Но существуют и альтернативные варианты. Как правило, они направлены на предупреждение формирования конденсата. Среди таких средств – испарители, возвращающие парообразный бутан в газгольдер, теплоизоляция и подогрев трубопровода, укладка его глубже точки промерзания, использование труб большего диаметра.

Однако их использование не всегда возможно и эффективно, к тому же обычно бывает дороже установки конденсатосборника.

Выводы и полезное видео по теме

Чтобы лучше себе представить принцип работы конденсатосборника, предлагаем посмотреть следующее видео:

Наглядное пособие о том, что такое газовый конденсат в следующем сюжете:

Мы разобрали зачем нужны газовые конденсатосборники, какие они бывают и как работают и на какие критерии обращать внимание при выборе подходящей емкости. Также поговорили о том, как и где их устанавливают и обслуживают конденсатосборники и какие есть альтернативные решения.

А вы уже сталкивались с этим оборудованием? С каким именно и по какому поводу? Делитесь опытом использования и другой информацией по теме – форма обратной связи расположена ниже под этой публикацией.

Энергосберегающие функции конденсатоотводчиков

Т. Гуцуляк, А. Кирилюк

Из-за постоянного удорожания энергоресурсов все промышленные отрасли заняты поиском альтернативных источников повышения энергоэффективности. Водяной пар, как одно из средств передачи тепловой энергии, становится всё более популярным

Важную роль в эффективном отборе тепла от пара, помимо теплообменников, играют конденсатоотводчики. Их главная задача – отбор от водяного пара как можно большего количества тепла – довольно непроста и зависит не только от наличия самих конденсатоотводчиков в системе, но также и от того, насколько правильно они подобраны. Чтобы правильно выбрать конденсатоотводчик для конкретного производственного процесса, необходимо хорошо знать и понимать принципы его работы и специфику применения пара в данном процессе.

Назначение конденсатоотводчиков

Конденсатоотводчик должен препятствовать уменьшению коэффициента теплопередачи. Уменьшение происходит за счет образования конденсата у потребителя пара, либо в паропроводе. Задача данного оборудования – отводить конденсат, не допуская при этом «пролет» и выпуск пара.

Читайте также:  Провести газ в частный дом: сроки, разрешения, документы

Пар, теряя тепло, необходимое для теплообменных процессов, отдает его стенкам трубопровода, превращаясь в конденсат. Если его не отводить – ухудшается «качество» пара, возникают кавитация и гидроудары. Наилучший вариант, когда конденсатоотводчик способен отводить конденсат, а также воздух и другие неконденсированные газы.

Не существует универсального конденсатоотводчика, подходящего для всех задач и условий применения. Все типы конденсатоотводчиков отличаются по принципу работы, при этом имея свои недостатки и преимущества. Всегда существует лучшее решение для конкретного применения в пароконденсатной системе. Выбор конденсатоотводчика зависит от
температуры, давления и количества образуемого конденсата.

Рис. 1. Основные типы:
а) – механический (поплавковый); б) – термодинамический; в) – термостатический

Типы конденсатоотводчиков

Существует три принципиально разных типа: механические, термостатические и термодинамические.

Принцип действия механических основан на разнице плотности пара и конденсата. Клапан приводится в действие шаровым поплавком или поплавком в виде перевернутого стакана. Механические конденсатоотводчики обеспечивают непрерывный отвод конденсата при температуре пара, поэтому этот тип устройств хорошо подходит для теплообменных аппаратов с большими поверхностями теплообмена и интенсивным образованием больших объемов конденсата.

Термостатические конденсатоотводчики определяют разницу температуры пара и конденсата. Чувствительный элемент и исполнительный механизм в данном случае – термостат. Прежде чем конденсат будет отведен, он должен быть охлажден до температуры ниже температуры сухого насыщенного пара.

В основе принципа действия термодинамического конденсатоотводчика лежит разница скоростей прохождения пара и конденсата в зазоре между диском и седлом. При прохождении конденсата из-за низкой скорости диск поднимается и пропускает конденсат. При поступлении пара в термодинамический конденсатоотводчик скорость увеличивается, приводя к падению статического давления, и диск опускается на седло. Пар, находящийся над диском, благодаря большей площади контакта, удерживает диск в закрытом положении. По мере конденсации пара давление над диском падает, и диск снова начинает подниматься, пропуская конденсат.

Таблица 1. Типы конденсатоотводчиков

Таблица 2. Сравнение конденсатоотводчиков и их типов

Выбор конденсатоотводчика

Для правильного подбора условного диаметра конденсатоотводчика нужно сначала определить входное давление, см. рис. 3.

Если конденсатоотводчик установлен после паропотребляющей установки, входное давление на 15% ниже давления на входе в установку.

Для примерного расчета противодавления, принимаем, что каждый метр подъема трубопровода составляет 0,11 бар противодавления.

Перепад давления = Входное давление – Противодавление.

Рассчитать количество конденсата можно, используя техническую документацию производителя паропотребляющего оборудования с учетом коэффициента запаса по расходу конденсата. На основных паропроводах, в теплообменниках и подобном оборудовании запас пропускной способности нужно установить в 2,5 – 3 раза больше расчетного. В других случаях запас больше в 1,5 – 2 раза.

После расчета коэффициента запаса по расходу конденсата, диаметр конденсатоотводчика выбирается по диаграмме
пропускной способности (см. рис.2), которую предоставляет завод-производитель.

Ниже в качестве примера приведены диаграммы пропускной способности AYVAZ SK-51 (данные и рекомендации предоставлены компанией «АЙВАЗ УКРАИНА»).

Рис. 2. Диаграмма пропускной способности SK-51 (1/2”-3/4”-1”)

Пример использования диаграммы (см. рис. 2): для конденсатоотводчика задан расход по конденсату 180 кг/час.

Конденсат отводится от теплообменника при давлении 6 бар и противодавлении 0,2 бар. Перепад давления 6 – 0,2 = 5,8 бар.
Расход по конденсату 180 х 3 = 540 кг/час.
Коэффициент запаса: 3.

Для отвода 540 кг/час конденсата при перепаде 5,8 бар, по синей линии на диаграмме, помеченной цифрой 10 (пропускная способность в данном случае составляет 700 кг/час), выбираем конденсатоотводчик диаметром 1” (Ду25). Цифра 10 обозначает размер отверстия выпускного клапана. Как видно из диаграммы (рис. 2) конденсатоотводчики диаметром 1/2” и 3/4” выбирать в данном случае нельзя, т.к. их пропускная способность по конденсату ниже требуемой.

Использование энергии пара вторичного вскипания

Во время нагрева воды при постоянном давлении её температура и теплосодержание растет. Это продолжается до тех пор, пока вода не закипит. Достигая точки кипения, температура воды не изменяется до тех пор, пока вода полностью не превратится в пар. И поскольку требуется максимально использовать тепловую энергию пара, используются конденсатоотводчики, см. рис 3.

Рис. 3. Использование конденсата и пара вторичного вскипания для теплообмена

Конденсат имеет ту же температуру при заданном давлении, что и пар. Когда конденсат после конденсатоотводчика попадает в зону атмосферного давления, он моментально вскипает и часть его испаряется, т.к. температура конденсата выше температуры кипения воды при атмосферном давлении.

Пар, который образуется при вскипании конденсата, называют паром вторичного вскипания.

Т.е. это пар, который образуется в результате попадания конденсата в атмосферу или среду с низким давлением и температурой.

Расчет количества пара вторичного вскипания:

где:
Эк: Энтальпия конденсата при попадании в конденсатоотводчик при заданном давлении (кДж/кг).
Эв: Энтальпия конденсата после конденсатоотводчика при атмосферном давлении, либо при текущем давлении в конденсатной линии (кДж/кг).
Ст: Скрытая теплота парообразования при атмосферном давлении, либо при текущем давлении в конденсатной линии (кДж/кг) трубопровода составляет 0,11 бар противодавления.

Как видно, чем больше разница давлений, тем большее количество пара вторичного вскипания образуется. Тип используемого конденсатоотводчика так же влияет на количество образуемого конденсата. Механические отводят конденсат с температурой близкой к температуре насыщения пара. В то время как термостатические – отводят конденсат с температурой значительно ниже температуры насыщения, при этом количество пара вторичного вскипания уменьшается.

При отборе пара вторичного вскипания нужно учесть, что:

  1. Для получения даже малого количества пара вторичного вскипания потребуется большое количество конденсата. Необходимо обратить особое внимание на пропускную способность конденсатоотводчика. Так же нужно учитывать, после регулирующих клапанов давление как правило низкое.
  2. Сфера применения должна соответствовать таковой для использования пара вторичного вскипания. Количество пара вторичного вскипания должно равняться или его должно быть немного больше, чем требуется для обеспечения технического процесса.
  3. Участок использования пара вторичного вскипания не должен располагаться далеко от оборудования, от которого отводится высокотемпературный конденсат.

Пример расчет количества пара вторичного вскипания в системе, где конденсат отводится сразу после его образования см. ниже.

Возьмем данные из таблицы насыщенного пара: при давлении 8 бар, 170,5°С, энтальпия конденсата = 720,94 кДж/кг. При атмосферном давлении, 100°С, энтальпия конденсата = 419,00 кДж/кг. Разница энтальпий составляет 301.94 кДж/кг. Скрытая теплота парообразования при атмосферном давлении = 2 258 кДж/кг. Тогда количество пара вторичного вскипания составит:

Таким образом, если расход пара в системе равен 1000 кг, то количество пара вторичного вскипания составит 134 кг.

Особенности монтажа конденсатоотводчиков

При установке конденсатоотводчика, следует проследить, чтобы стрелка на его корпусе соответствовала направлению потока, см. рис 4, а).

Конденсатоотводчики поплавкового типа должны устанавливаться строго горизонтально. Некоторые, в специальном исполнении могут устанавливаться вертикально. Вход пара в такие конденсатоотводчики должен быть с нижней стороны, см. рис 4, б).

Конденсатоотводчики должны располагаться ниже подключения паровой линии к оборудованию. В противном случае, возможно подтопление оборудования. В случаях, когда установка конденсатоотводчиков таким образом невозможна, необходимо организовать принудительный отвод конденсата, см. рис 4, в).

Термодинамические конденсатоотводчики работают в любом положении. Однако, горизонтальное положение более предпочтительно при установке см. рис 4, г).

Рис. 4. Правильный монтаж конденсатоотводчика

Конденсатоотводчики не должны устанавливаться друг за другом ни в коем случае. Иначе, второй будет создавать давление, которое негативно скажется на работе первого, который уже смонтирован, см. рис. 5, а).

Фильтры, установленные перед конденсатоотводчиками, должны быть повернуты влево или вправо. В противном случае, в нижней части фильтра будет скапливаться конденсат, что может привести к гидроударам, см. рис. 5, б).

Рис. 5. Установка конденсатоотводчика в системе

Правильный выбор и применение оборудования от производителя AYVAZ – эффективный способ повысить уровень энергосбережения в паровых системах.

Больше важных статей и новостей в Telegram-канале AW-Therm. Подписывайтесь!

Конденсатоотводчики: типы и принцип действия

Содержание

Конденсатоотводчик — это устройство для автоматического отвода конденсата из паропровода. При охлаждении пар переходит в жидкое состояние, качество теплопередачи ухудшается. В результате потерь на нагрев продукта внутри оборудования накапливается жидкость. Производительность паропровода падает, если своевременно не удалять излишки воды из нагревательной камеры. Установка клапанов снижает расход пара и защищает систему от гидравлических ударов.

Виды устройств для устранения конденсированной жидкости:

  • термодинамические — учитывают аэродинамический эффект;
  • термостатические — реагируют на перепады температур;
  • поплавковые — фиксируют плотность жидких и парообразных компонентов.

Принцип работы арматуры основан на отделении пара от неконденсируемых сред. Главная цель — эффективное использование тепловой энергии. Механизм спуска избыточной влаги срабатывает при заполнении свободного объема внутри элемента. Конденсат проходит по отдельному каналу, затем стекает через пропускное отверстие. После этого затвор возвращается в исходное положение до следующего поступления остатков рабочей среды. В зависимости от типа конструкции отвод веществ протекает циклически либо непрерывно.

Преимущества автоматических систем:

  • бесперебойный режим эксплуатации;
  • оперативность срабатывания;
  • простота в обслуживании; компактность, легкость;
  • устойчивость к высоким нагрузкам, вибрации, коррозии.

Применение конденсатоотводчиков позволяет экономить энергоресурсы паровых трубопроводов. Фильтрация лишних компонентов на 20% увеличивает полезную работу оборудования. Приборы устанавливают на протяжении всей магистральной линии сразу за калориферами и нагревателями.

Термодинамический конденсатоотводчик

Схема термодинамического конденсатоотводчика

Принцип действия основан на энергии, которая возникает при закипании конденсата. В камере давления расположен подвижный диск, который открывает и запирает пропускные отверстия. Конденсированная жидкость поступает по входному каналу, приподнимает затвор и свободно покидает систему через выпускное устройство. По мере закипания воды в камере образуется пар, скорость истечения между седлом и диском увеличивается. Давление под запорным элементом падает, а накопленный сверху пар возвращает прижимную пластину в первоначальное состояние. Цикл возобновляется, когда давление на входе снова возрастает.

Поплавковый конденсатоотводчик

Схема поплавкового конденсатоотводчика

Трубопроводная арматура с закрытым поплавком сочетает механический и термостатический принципы действия. Шарообразный поплавок реагирует на плотность жидкости. При повышении уровня воды, рычаг поднимает шар и открывает выпускной клапан. После удаления конденсата поплавок опускается, прекращая сброс. Процесс идет без остановки, это необходимо в теплообменных аппаратах с высокой интенсивностью конденсации. Сбросом воздуха управляет термостатический элемент в верхней части камеры. При температуре горячего пара он закрыт. Как только температура над поверхностью конденсированного вещества снижается, деталь открывает затвор и высвобождает паровоздушную смесь. Термоэлемент периодически выпускает наружу неконденсируемые газы.

Термостатический конденсатоотводчик

Схема термостатического конденсатоотводчика

Устройство мембрано-капсульного типа состоит из мембраны, сильфона, золотника. Запирающий механизм срабатывает при изменении температуры. В сильфонной капсуле находится жидкость, которая испаряется при температуре насыщения пара. Во время запуска системы клапан открыт, отводу воды и воздуха ничего не мешает. Но при попадании в конденсатоотводчик горячего пара, наполнитель в сильфоне начинает нагреваться. При его испарении повышается внутреннее давление. Упругая мембрана растягивается и прижимает золотник к седлу. Когда конденсат накопится в достаточном количестве, управляющий механизм сожмется и откроет выходной канал для слива.

Рязанский городской форум

запрет на сильфонный шланг

запрет на сильфонный шланг

Сообщение denzyl666 » 14 сен 2012, 00:31

Купил сильфонный шланг и хотел им подсоединить АОГВ, но газовщики запретили сказав что нужно подсоединять только металической трубой иначе не подпишут документы и не дадут разрешение. Я понимаю что они не правы, но как это доказать?

Re: запрет на сильфонный шланг

Сообщение DS » 14 сен 2012, 04:20

Читайте также:  Газификация объектов, монтаж и установка оборудования

Re: запрет на сильфонный шланг

Сообщение denzyl666 » 14 сен 2012, 07:17

Re: запрет на сильфонный шланг

Сообщение DS » 14 сен 2012, 07:33

Re: запрет на сильфонный шланг

Сообщение Nick » 14 сен 2012, 10:50

Re: запрет на сильфонный шланг

Сообщение Fafhrd » 14 сен 2012, 11:46

6.2. Газопроводы, прокладываемые внутри зданий и сооружений, следует предусматривать из стальных труб, отвечающих требованиям разд. 11. Для присоединения передвижных агрегатов, переносных газовых горелок, газовых приборов, КИП и приборов автоматики допускается предусматривать резиновые и резинотканевые рукава. При выборе рукавов следует учитывать их стойкость к транспортируемому газу при заданных давлении и температуре.

6.26. Газовые приборы и газогорелочные устройства следует присоединять к газопроводам, как правило, жестким соединением.
Присоединение к газопроводу газовых приборов, лабораторных горелок, а также устанавливаемых в цехах промышленных предприятий переносных и передвижных газогорелочных устройств и агрегатов допускается предусматривать после отключающего крана резинотканевыми рукавами. Резинотканевые рукава для присоединения бытовых газовых приборов и лабораторных горелок не должны иметь стыковых соединений.

Re: запрет на сильфонный шланг

Сообщение Nick » 14 сен 2012, 12:24

Re: запрет на сильфонный шланг

Сообщение никанора » 14 сен 2012, 13:07

Ну, если им охота трубу подгонять, пусть подгоняют, Вам то что? Шланг обратно в магазин сдадите.

Гибкая подводка и есть сильфонный шланг. Просто его покупать надо у газовщиков)

Re: запрет на сильфонный шланг

Сообщение denzyl666 » 14 сен 2012, 18:53

“Надо просто сделать то, что требуют газовщики, в чём проблема, я понять не могу? По правилам ездят только лохи?” – проблема в том что сильфонный шланг есть и он ничем не хуже жёсткой трубы. Трубу же ещё надо гнуть и подгонять, а смысла кроме слов газовщиков ИМЕННО НАШЕГО района я не вижу.

“Сегодня вы китайскую резинку приделаете, через 3 года она рассохнется и полдома снесёт, зато газовщиков умыли.” – во всех районах присоединяют именно этими шлангами, они именно и созданы для подключения газовых колонок аогв котлов и др, и в отличии от резиновых с железной оплёткой их срок службы не 2-3 года а 15-20 лет. и нет никакой резины.

“Ну, если им охота трубу подгонять, пусть подгоняют, Вам то что?”- у них работы расписаны до декабря, а холодно будет уже через месяц

“Что значит сильфонный шланг?” – Nick выложил рисунок именно его.Гибкая подводка для газа, получившая распространение в последнее время, является гофрированным стальным рукавом с приваренными концевыми деталями. Сам металлорукав Газовая подводкавыполнен из нержавеющей стали,Гибкая газовая подводка не подвержена естественному старению и способна безболезненно выдерживать воздействие высоких температур, сохраняя свои технические характеристики.

Re: запрет на сильфонный шланг

Сообщение никанора » 14 сен 2012, 20:24

Re: запрет на сильфонный шланг

Сообщение Колхозник » 14 сен 2012, 21:03

denzyl666 , мне кажется, что случай с сильфонным шлангом, это некие суеверия и предрассудки местных газовщиков. Никаких нормативных документов, ИМХО нет.

Если не сумеешь подключиться легально, то подключи сам. Газовщики совсем офигели. Несколько лет назад я перестраивал дом. Все газовые трубы нужно было снять, а потом опять поставить. Пошёл в горгаз, а им некогда. Всё переделал сам. Правда расположение и тип газового оборудования остался таким же. И никаких проблем с этого не поимел.

Re: запрет на сильфонный шланг

Сообщение denzyl666 » 14 сен 2012, 21:55

Re: запрет на сильфонный шланг

Сообщение denzyl666 » 14 сен 2012, 22:57

Fafhrd, сейчас СНиП 42-01-2002 вроде как рулит и там как то так:

7.3 Внутренние газопроводы выполняют из металлических труб (стальных и медных)
и теплостойких многослойных полимерных труб, включающих в себя в том числе один
металлический слой (металлополимерных). Применение медных и многослойных
металлополимерных труб допускается для газопроводов с давлением категории IV.
Многослойные металлополимерные трубы допускается использовать для внутренних
газопроводов при газоснабжении природным газом жилых одноквартирных домов
высотой не более трех этажей при условии подтверждения в установленном порядке их
пригодности для применения в строительстве.
Допускается присоединение к газопроводам бытовых газовых приборов,
КИП, баллонов СУГ, газогорелочных устройств переносного и передвижного
газоиспользующего оборудования гибкими рукавами, стойкими к транспортируемому
газу при заданных давлении и температуре, в том числе теплостойкими гибкими
многослойными полимерными трубами, армированными синтетическими нитями, при
условии подтверждения в установленном порядке их пригодности для применения в
строительстве.

но и его что то пересматривают что то вносят.
я так понимаю что всё таки никому нельзя использовать никакой гибкий шланг в отопительной газовой технике, но если я правильно понял подвод можно сделать металлополимерной трубой, где млин логика не пойму. Хотя перечитав в последнее время кучу форумов и законопроектов понял что и те кто пытается внести изменения понимают абсурдность текущего положения.

Re: запрет на сильфонный шланг

Сообщение denzyl666 » 15 сен 2012, 00:45

стоп чё я туплю то, перечитал наверное. вот оно))

СНиП 42-01-2002
7.3 . Допускается присоединение к газопроводам бытовых газовых приборов. гибкими рукавами.
тоже и в СП 62.13330.2011 а значит они не противоречат друг другу

а по СП 42-101-2003
6.1. В качестве гибких рукавов рекомендуется применять сильфонные металлорукава, стойкие к воздействию транспортируемого газа при заданных давлении и температуре.

осталось тока попробовать втолковать это газовщикам, и опять же если я сам всё правильно понял.
И прокатит ли АОГВ (он ведь АППАРАТ) за газовый ПРИБОР.

Re: запрет на сильфонный шланг

Сообщение никанора » 15 сен 2012, 18:07

Чего-то Вы врёте ИМХО. Либо денег жалко на ускорение очереди.
Легитимную бумажку выдаст только горгаз, прийдя к Вам домой, даже, если Вы подключитесь сами, то ждать придётся “декабря” с возможностью нарваться на штраф и за незаконное подключение.
Как вариант, можно шланг отвернуть перед приходом газовщиков с трубами.

А Вы в городе подключаетесь? Впервые? Частный дом или многоквартирный? У нас в Октябрьском районе АОГВ подключено шлангом ОФИЦИАЛЬНО через кассу, на очередь вставали в начале лета.

Re: запрет на сильфонный шланг

Сообщение nikols » 15 сен 2012, 18:25

Re: запрет на сильфонный шланг

Сообщение Князь » 15 сен 2012, 22:03

Re: запрет на сильфонный шланг

Сообщение Wolf » 15 сен 2012, 22:24

Re: запрет на сильфонный шланг

Сообщение никанора » 16 сен 2012, 09:27

Конденсатоотводчики для пара: типы и принцип их действия

А вы знаете, что в английском языке нет прямого перевода слова конденсатоотводчик? Там этот элемент пароконденсатной системы называется «паровой ловушкой». Эти названия отлично характеризуют различие подходов российских и англоговорящих инженеров к проблеме образования конденсата. Если отечественные специалисты преимущественно совершенствуют системы его отвода, то зарубежные стремятся снизить потери пара при конденсации.

Интересный факт — доля пролетного пара составляет в среднем около 25-30% от общего объема. Это очень большие потери, которые приводят не только к увеличению производственных затрат на получение и химподготовку питательной воды для котла, но и становятся причиной ускоренного старения оборудования и трубопроводов.

В любом случае каждая пароконденсатная система оснащается конденсатоотводчиками, автоматически отводящими конденсат из паровой области. По сути, эти элементы выполняют функцию дренажа паропровода. Удаляют избыток конденсата из системы, чтобы решить сразу несколько проблем — предупредить чрезмерное падение давления из-за уменьшения сечения паропровода перед потребителем, уменьшить риск возникновение гидравлического удара и поддержать теплосодержание пара на всем пути до теплообменного оборудования.

Сегодня производители предлагают большой выбор конденсатоотводчиков, различающихся по принципу своего действия. Чем различаются основные типы, рассказывает Андрей Шахтарин, директор компании «ВТК-Велес».

Термодинамические конденсатоотводчики

Это самый распространенный тип конденсатоотводчиков, идеально подходящий для систем с малым и средним расходом пара. Они просты, надежны и долговечны. Отличаются компактными размерами и доступной ценой. Удобны в обслуживании и ремонте, нечувствительны к гидроударам. Работают благодаря разнице в скоростях перемещения пара и конденсата.

Когда через термодинамический конденсатоотводчик проходит на высокой скорости пар, диск, установленный в элементе, находится в опущенном состоянии. Его просто придавливает к седлу паром за счет большой площади контакта. По мере накапливания конденсата давление над диском падает. Одновременно на него начинает действовать статическое давление скопившейся жидкости и он начинает подниматься, пропуская образовавшийся конденсат. После чего процесс происходит заново.

Термостатические конденсатоотводчики

Имеют в чем-то похожую конструкцию, как у предыдущего вида, но принцип действия основан на разности температур пара и конденсата. Здесь за открытие/закрытие отводящего клапана отвечает капсула с специальным составом, реагирующая на нагревание.
В холодном состоянии между диском капсулы и седлом есть зазор, через который выходят конденсат, воздух и неконденсируемые газы. При нагреве паром состав в капсуле расширяется, опуская диск на седло и препятствуя выходу пара. Такая конструкция элемента позволяет использовать термостатический конденсатоотводчик не только для отвода конденсата, но и в качестве воздухоотводчика.

Поплавковые конденсатоотводчики

Как понятно из названия, здесь действует принцип действия поплавка, который при наличии конденсата поднимается, при снижении его уровня опускается, перекрывая выпускной клапан. Принцип действия системы основан на разнице плотности сред.

Поплавковые конденсатоотводчики обеспечивают непрерывный отвод конденсата из теплообменного оборудования, работают на всех типах паропотребляющего оборудования и показывают высокую эффективность в любых режимах. Устойчивы к воздушным пробкам.

Во время пуска системы из холодного состояния в конденсатоотводчик сначала поступает воздух и другие неконденсируемые газы. Они удаляются в конденсатную ветку через встроенный термостатический клапан.

Конденсатоотводчики с перевернутым стаканом

Этот вид конденсатоотводчика работает по принципу стакана с газом, поставленного в воду вверх дном. При наполнении паром он стремится вверх, наполненный конденсатом опускается вниз. Такой перевернутый стакан соединен с клапаном, открывающимся при его опускании и закрывающимся при подъеме. Конструкция конденсатоотводчика с перевернутым стаканом нечувствительна к гидравлическим ударам и паровым пробкам, может работать на больших перепадах давлений и позволяет обеспечивать постоянный отвод газов и воздуха.

Биметаллические конденсатоотводчики

Здесь в качестве рабочего элемента выступает шток клапана, на котором закреплены биметаллические пластины с разным коэффициентом расширения.

Элементы подобраны таким образом, что в холодном состоянии пластины представляют собой плоский диск, который пропускает воздух и конденсат. При нагреве пластины неравномерно расширяются и изгибаются, перемещая шток на закрытие и препятствуя выходу пара. Благодаря чему биметаллический конденсатоотводчик может использоваться в качестве воздухоотводчика. Кроме того, этот вид подходит для установки на паропроводах перегретого пара, так как элемент конструктивно состоит из материалов, выдерживающих высокие температуры.

Приобрести любой из перечисленных типов конденсатоотводчиков, можно в нашей компании «ВТК-Велес». В нашем ассортименте представлены все виды от ведущих производителей по доступным ценам. Заказывая конденсатоотводчик, учитывайте, что универсального варианта не существует. В каждом случае нужно подбирать элемент с учетом параметров вашей пароконденсатной системы. При любых затруднениях обращайтесь к нашим специалистам — мы поможем с выбором оборудования. Связаться с нами можно любым удобным для вас способом.

Ссылка на основную публикацию